I have solved this problem. I wish to find out if my solution is correct.

**Problem:**

Determine the area of the surface $A$ of that portion of the paraboloid:

$$x^2+y^2-2z=0$$ where $x^2+y^2\le 8$, $y\ge x$

**Solution:**

From the surface: $x^2+y^2-2z=0$

$$\begin{align}z=\dfrac12(x^2+y^2)\\\dfrac{ \partial z}{\partial x}=\dfrac12(2x)=x\\\dfrac{\partial z}{\partial y}=\dfrac12(2y)=y\end{align}$$

Area $$A=\iint_S \mathrm dS$$

$$\begin{align}\mathrm dS&=\sqrt{\left(\dfrac{\mathrm dz}{\mathrm dx}\right)^2+\left(\dfrac{\mathrm dz}{\mathrm dy}\right)^2+1}\,\mathrm dA\\&=\sqrt{x^2+y^2+1}\,\mathrm dA\\&=3\,\mathrm dA\end{align}$$

$$\begin{align}\text{Area }A&=\iint_S 3\,\mathrm dA\qquad\qquad \mathrm dA=r\,\mathrm dr\,\mathrm d\theta\\&=3\int_0^{2\pi}\int_0^{2\sqrt2}r\, \mathrm dr\\&=6\pi\left[\frac{r^2}2\right]_0^{2\sqrt2}\\&=6\pi\cdot 4\\&=24\pi\end{align}$$

**Problem:**

Determine the area of the surface $A$ of that portion of the paraboloid:

$$x^2+y^2-2z=0$$ where $x^2+y^2\le 8$, $y\ge x$

**Solution:**

From the surface: $x^2+y^2-2z=0$

$$\begin{align}z=\dfrac12(x^2+y^2)\\\dfrac{ \partial z}{\partial x}=\dfrac12(2x)=x\\\dfrac{\partial z}{\partial y}=\dfrac12(2y)=y\end{align}$$

Area $$A=\iint_S \mathrm dS$$

$$\begin{align}\mathrm dS&=\sqrt{\left(\dfrac{\mathrm dz}{\mathrm dx}\right)^2+\left(\dfrac{\mathrm dz}{\mathrm dy}\right)^2+1}\,\mathrm dA\\&=\sqrt{x^2+y^2+1}\,\mathrm dA\\&=3\,\mathrm dA\end{align}$$

$$\begin{align}\text{Area }A&=\iint_S 3\,\mathrm dA\qquad\qquad \mathrm dA=r\,\mathrm dr\,\mathrm d\theta\\&=3\int_0^{2\pi}\int_0^{2\sqrt2}r\, \mathrm dr\\&=6\pi\left[\frac{r^2}2\right]_0^{2\sqrt2}\\&=6\pi\cdot 4\\&=24\pi\end{align}$$

Last edited by a moderator: