# Evaluate bounded integral

#### idontknow

Evaluate $$\displaystyle I=\int \limits_{0}^{\infty } \dfrac{\sin^2 (x)}{1+x^2 } dx$$.

#### romsek

Math Team
Here's the result anyway. I don't have a step by step for you.

$I = \dfrac{\pi \sinh (1)}{2 e}$

idontknow

#### topsquark

Math Team
Evaluate $$\displaystyle I=\int \limits_{0}^{\infty } \dfrac{\sin^2 (x)}{1+x^2 } dx$$.
Just eye-balling the thing, this should be doable using contour integration. Are you allowed to use this?

-Dan

#### idontknow

Just eye-balling the thing, this should be doable using contour integration. Are you allowed to use this?

-Dan
Yes it is allowed.

#### topsquark

Math Team
Okay. First note that the integrand is an even function so we have
$$\displaystyle \int_0^{ \infty} \dfrac{sin^2(x)}{1 + x^2} ~ dx = \dfrac{1}{2} \int_{-\infty}^{ \infty} \dfrac{sin^2(x)}{1 + x^2} ~ dx$$.

Now evaluate $$\displaystyle \dfrac{1}{2} \int_{-\infty}^{ \infty} \dfrac{sin^2(z)}{1 + z^2} ~ dz$$.

The poles of the integrand are at $$\displaystyle z = \pm i$$. Choose a contour as the upper half circle going from -R to R and circling counterclockwise with radius R. We then let $$\displaystyle R \to \infty$$. The contour encloses the $$\displaystyle z = i$$ pole, which has a residue of $$\displaystyle - \dfrac{i}{2} sinh^2(1)$$ at z = i so

$$\displaystyle \lim_{R \to \infty} \int_{-R}^{R} \dfrac{sin^2(z)}{1 + z^2} ~ dz + \lim_{R \to \infty} \int_{upper} \dfrac{sin^2(z)}{1 + z^2} ~ dz = 2 \pi i \left (- \dfrac{i}{2} sinh^2(1) \right )$$

The upper half circle integral goes to 0 in the limit as R goes to infinity, so we are left with

$$\displaystyle \int _0 ^{\infty} \dfrac{sin^2(x)}{1 + x^2} ~ dx = \lim_{R \to \infty} \dfrac{1}{2} \int_{-R}^{R} \dfrac{sin^2{z}}{1 + z^2} ~dz = \dfrac{ \pi }{2} sinh^2(1)$$

Which is wrong?? Where did I screw up?

-Dan

idontknow

#### idontknow

btw this is what the book suggests : evaluate $$\displaystyle I$$ using $$\displaystyle \frac{d}{dm}\int \limits_{-\infty}^{\infty} e^{-t^2 }\cos (mt) dt , \; \; m\in \mathbb{R}$$.
but I don't see any connection.

#### idontknow

$$\displaystyle I_m = \int_{0}^{\infty} [\frac{\cos(mt)}{1+t^2 }]_m '' dt= \int_{0}^{\infty} \frac{\cos(mt)}{1+t^2 }$$. m>0.

$$\displaystyle 2I=\int_{0}^{\infty} \frac{dt}{1+t^2 }dt -I_2 =\frac{\pi}{2}-I_2$$ .

$$\displaystyle I_m '' =I_m \implies I_m = c_1 e^m +c_2 e^{-m}$$ ; $$\displaystyle \; \; \begin{cases} c_1 +c_2 = I_0 =\pi /2 \\ c_1 e +c_2 /e =I_1 =\pi /2e \end{cases} \implies c_2 =\pi /2 , c_1 =0$$.

$$\displaystyle I_m =e^{-m}\pi /2$$ ; $$\displaystyle \; \; I_2 =\frac{\pi}{2e^2}$$ ; $$\displaystyle \; \; 2I=\pi /2 -\frac{\pi}{2e^2 }=\frac{\pi (e^2 -1)}{2e^2}$$.

$$\displaystyle I=\frac{\pi (e^2 -1 )}{4e^2 }$$.

topsquark
Similar Math Discussions Math Forum Date
Calculus
Calculus
Calculus
Real Analysis