Power 2 Pythagoras can be represented by a right-angled triangle with the hypotenuse as the base , and a power 1 can be represented by a straight line of length a = b+c with 180 degrees between b an c

Now applying the same to powers higher than 2, and calculating the angle between b and c where a^n = b^n + c^n shows that the only rational angle with a rational cosine is 60 degrees and this is not possible unless the power is infinite. This is represented by an equilateral triangle with one side as the base and the other two as 0.5 +.866 i and 0.5 - 0.866 i