# Hard Limit

#### idontknow

Evaluate the limit without L'hÃ´pitalâ€™s rule.
$$\displaystyle \lim_{y\rightarrow \infty }\frac{\ln(yn)}{y^n } \;$$, $$\displaystyle n\in \mathbb{N}.$$

Last edited by a moderator:

#### idontknow

$$\displaystyle L=\lim_{y\rightarrow \infty} \frac{\ln(y)}{y^n } +\lim_{y\rightarrow \infty}\frac{\ln(n)}{y^n }=\lim_{y\rightarrow \infty}\frac{\ln(y)}{y^n }=\lim_{y\rightarrow \infty }\frac{\ln(e^y)}{e^{yn} }=\lim_{y\rightarrow \infty}n^{-1} \frac{y}{e^y}=\lim_{y\rightarrow \infty}(en)^{-1} \frac{1+y}{e^y }=(en)^{-1}L$$

Now the equation is $$\displaystyle L=(en)^{-1} L$$. Since $$\displaystyle y^{1-y} < \frac{y}{e^y } < \frac{y}{1+y} \;$$ the limit converges .
$$\displaystyle L=(ne)^{-1} L \:$$ has solution L=0.

Last edited:

#### v8archie

Math Team
Your $n^{-1}$ isn't correct when it appears.

The limit $\displaystyle \lim_{x \to \infty} \frac{\ln^a{x}}{x^b} = 0$ where $a > 0$ and $b > 0$ is a standard result that is often simply quoted. Whether you are allowed to do that or not depends on what you have been given (or proved) as results.

\begin{alignat}{2}
0 &< \frac1t &&< t^{c-1} &&& (c > 0,\, t> 1) \\
\int_1^x 0 \,\mathrm dt &< \int_1^x \frac1t \,\mathrm dt &&< \int_1^xt^{c-1}\,\mathrm dt &&&(x > 1) \\
0 &< \ln x &&< x^c - \frac1c &&< x^c \\
0 &< \frac{\ln^a x}{x^b} &&< x^{ac-b} &&& (a > 0, \, b > 0) \quad \text{raising to the power $a$ and dividing by $x^b$}\\
\end{alignat}
With $c=\frac{b}{2a} > 0$ we have $ac-b=-\frac{b}2 < 0$ and so, the limit of the left- and right-hand expressions as $x \to \infty$ is zero and thus the limit $$\lim_{x \to \infty} \frac{\ln^a{x}}{x^b} = 0 \qquad (a > 0, \, b > 0)$$

Last edited:
1 person
Similar Math Discussions Math Forum Date
Real Analysis
Real Analysis
Calculus
Calculus