Limits with sequences

idontknow

Evaluate:
a. $$\displaystyle l=\lim_{N\rightarrow \infty } \underbrace{sinsin...sin}_{N}N$$.
b. $$\displaystyle l=\lim_{n\rightarrow \infty } n!^{-2n}\prod_{i=1}^{n}i^i$$.
c. $$\displaystyle l=\lim_{n\rightarrow \infty } \frac{\sum_{i=1}^{n^2 }i^{-1}}{\ln(n)}$$.

DarnItJimImAnEngineer

a. is quite obviously zero.

1 person

idontknow

a. is quite obviously zero.
I agree , $$\displaystyle 0<\displaystyle \underbrace{sinsin...sin}_{N}N <1/N$$ or $$\displaystyle 0<l\leq \lim_{N\rightarrow \infty } 1/N=0$$.
$0<l<0 , l=0.$

SDK

I agree , $$\displaystyle 0<\displaystyle \underbrace{sinsin...sin}_{N}N <1/N$$ or $$\displaystyle 0<l\leq \lim_{N\rightarrow \infty } 1/N=0$$.
$0<l<0 , l=0.$
Its true that the limit is zero but its not via comparison to $1/N$. The sequence $\sin \sin \sin \cdots \sin N$ refers to function composition, not a product. So $-1 < \sin N < 1$ is the last "obvious" step. For instance, in the second iteration you need to prove that $-\frac{1}{2} < \sin \sin N < \frac{1}{2}$ and I don't see any reason that this is obviously true.

1 person

idontknow

set N=2p and let $$\displaystyle sin_{N}N =\underbrace{sinsin...sin}_{N}N$$ , $$\displaystyle \displaystyle sin_N (N) < sin_{N-2}sin\frac{N}{2}<sin_{N-4}sin\frac{N}{4}<...<sin\frac{2p}{2^p}<\frac{2p}{2^p }.$$
Now we have $$\displaystyle 0<l<\lim_{N\rightarrow \infty } \frac{2N}{2^N }=0$$.

idontknow

b. $$\displaystyle \: \frac{n^n }{n!^{2n} } \rightarrow 0 < \displaystyle n!^{-2n}\prod_{i=1}^{n}i^i < e^{-n^2 }\frac{n^{2n^2 }}{n!^{2n} }=e^{-n^2 } (\frac{n^{n}}{n! })^{2n}\rightarrow 0$$.

Similar Math Discussions Math Forum Date
Calculus
Calculus
Calculus
Real Analysis