Given equation \(\displaystyle x^2 +x +\lambda =0 \; ,x\in \mathbb{R}\).

Verify

\(\displaystyle N_{\lambda } =\frac{\displaystyle 1 + \lim_{s\rightarrow \infty} \left[-2\left(1+e^{-2s(-1-4\lambda)}\right)+1\right]}{2}\lim_{s\rightarrow \infty} \left[-2\left(1+e^{-2s(-1-4\lambda)}\right)+1\right]\cdot \left\lceil \frac{Re\{ \sqrt{-1-4\lambda}\}+1}{Re \{ \sqrt{-1-4\lambda}\}+2} \right\rceil.\)

Verify

**N**- the number of solutions, using any software (matlab, calculators... etc.)\(\displaystyle N_{\lambda } =\frac{\displaystyle 1 + \lim_{s\rightarrow \infty} \left[-2\left(1+e^{-2s(-1-4\lambda)}\right)+1\right]}{2}\lim_{s\rightarrow \infty} \left[-2\left(1+e^{-2s(-1-4\lambda)}\right)+1\right]\cdot \left\lceil \frac{Re\{ \sqrt{-1-4\lambda}\}+1}{Re \{ \sqrt{-1-4\lambda}\}+2} \right\rceil.\)

**Re**- real part of imaginary number (if it exists).
Last edited by a moderator: